quinta-feira, 19 de agosto de 2010

Vídeos - Educativos - Gratuitos - TV Escola: 1 - TV Job - Assista Agora - Programação Hoje - TV...

Vídeos - Educativos - Gratuitos - TV Escola: 1 - TV Job - Assista Agora - Programação Hoje - TV...: "Gostou do Blog então Recomende - Clique no Botão Recomende <!..."

Construção com régua e compasso

Bem, agora vo motrar mais ou menos como criar retas e pontos usando compasso e regua,e falando um pouco sobre retas e etc...começando com:

Construção do ponto médio com régua e compasso



  1. Com o compasso centrado no ponto A, traçamos um arco com o raio igual à medida do segmento AB;  
  2. Com o compasso centrado no ponto B, traçamos um outro arco com o mesmo raio que antes;
  3. Os arcos terão interseção em dois pontos localizados fora do segmento AB;
  4. Traçamos a reta (vermelha) ligando os pontos obtidos na interseção dos arcos;
O ponto médio M é a interseção da reta (vermelha) com o segmento AB.

                                      Retas paralelas
    Duas retas são paralelas se estão em um mesmo plano e não possuem qualquer ponto em comum. Se as retas são coincidentes ("a mesma reta") elas são paralelas. É usual a notação a // b, para indicar que as retas a e b são paralelas.
    Propriedade da paralela
    Por um ponto localizado fora de uma reta dada, pode ser traçada apenas uma reta paralela. Este fato é verdadeiro apenas na Geometria Euclidiana, que é a Geometria do nosso cotidiano.
    Construção de paralela com régua e compasso Dada uma reta r e um ponto C fora dessa reta, podemos construir uma reta paralela à reta dada que passa por C. Este tipo de construção gerou muitas controvérsias e culminou com outras definições de geometrias denominadas "não Euclidianas", que embora sejam utilizadas na prática, não se comportam da forma usual que um ser humano olha localmente para um objeto geométrico.
  1. Centrar o compasso no ponto C, traçar um arco que corta a reta em E.
  2. Com a mesma abertura do compasso, colocar a ponta seca do mesmo no ponto E e traçar um outro arco cortando a reta em F.
  3. Do ponto E, com abertura igual à corda CF, traçar um arco para obter D.
Traçar uma reta ligando os pontos C e D e observar que a reta que passa em CD é paralela à reta que passa em EF.


                                 Retas concorrentes
    Duas retas são concorrentes se possuem um único ponto em comum. Um exemplo de retas concorrentes pode ser obtido pelas linhas retas que representam ruas no mapa de uma cidade e a concorrência ocorre no cruzamento das retas (ruas).
    Retas perpendiculares
    Ângulo reto Um ângulo que mede 90 graus. Todos os ângulos retos são congruentes. Este tipo de ângulo é fundamental nas edificações.
    Retas perpendiculares São duas retas concorrentes que formam ângulos de 90 graus. Usamos a notação ab para indicar que as retas a e b são perpendiculares.
    Propriedade da reta perpendicular Por um ponto localizado fora de uma reta dada, pode ser traçada apenas uma reta perpendicular.
    Construção de perpendicular com régua e compasso (1)
    Dada uma reta e um ponto fora da reta, podemos construir uma outra reta perpendicular à primeira, da seguinte forma:  
  1. Centrar o compasso no ponto P e com uma abertura maior do que a distância de P à reta e traçar um arco cortando a reta em dois pontos A e B;
  2. Centrar o compasso no ponto A e com um raio igual à medida do segmento AB traçar um arco;
  3. Centrar o compasso no ponto B e com a mesma abertura que antes traçar outro arco cortando o arco obtido antes no ponto C;
A reta que une os pontos P e C é perpendicular à reta dada, Portanto AB é perpendicular a PC.


        Construção de perpendicular com régua e compasso (2)
Dada uma reta e um ponto P na reta, podemos obter uma reta perpendicular à reta dada, do seguinte modo:  
  1. Centrar o compasso no ponto P e marcar os pontos A e B sobre a reta que estão à mesma distância de P;
  2. Centrar o compasso no ponto A e raio igual à medida de AB para traçar um arco;
  3. Centrar o compasso no ponto B e com o mesmo raio, traçar um outro arco;
  4. Os arcos cruzam-se em C;
  5. A reta contendo PC é perpendicular à reta contendo o segmento AB.

Retas transversais e ângulos especiais
Reta transversal a outras retas, é uma reta que tem interseção com as outras retas em pontos diferentes. Na figura, t é uma reta transversal às retas m e n e estas três retas formam 8 ângulos, sendo que os ângulos 3, 4, 5 e 6 são ângulos internos e os ângulos 1, 2, 7 e 8 são ângulos externos. Cada par destes ângulos, recebe nomes de acordo com a localização em relação à reta transversal e às retas m e n.

Ângulos Correspondentes (desenho acima)

Estão do mesmo lado da reta transversal.
Um deles é interno e o outro é externo.

1 e 5 2 e 6 3 e 7 4 e 8

Ângulos Alternos (desenho acima)

 Estão em lados opostos da reta transversal.
Ambos são externos ou ambos são internos.

1 e 8 2 e 7 3 e 6 4 e 5

Ângulos Colaterais (desenho acima)

 Estão do mesmo lado da reta transversal.
Ambos são externos ou ambos são internos.

1 e 7 2 e 8 3 e 5 4 e 6

Ângulos alternos e colaterais ainda podem ser internos ou externos:
 
alternos (desenho acima)
alternos internos 
3 e 6 / 4 e 5
alternos externos
1 e 8 / 2 e 7
 
colaterais (desenho acima)
colaterais internos
3 e 6 / 4 e 5
colaterais externos
1 e 7 / 2 e 8
 
Propriedades das retas tranversais
Se duas retas paralelas (em cor preta) são cortadas por uma reta transversal (em cor vermelha), os ângulos correspondentes são congruentes, isto é, têm as mesmas medidas.

Se duas retas paralelas são cortadas por uma reta transversal, os ângulos alternos internos são congruentes.
 


Na figura ao lado, observamos que o ângulo 3 também é congruente aos ângulos 1 e 2.


Quando duas retas r e s são paralelas e uma reta transversal t é perpendicular a uma das paralelas, então ela também será perpendicular à outra.
Ângulos de lados paralelos
São dois ângulos cujos lados são paralelos, sendo que eles podem ser congruentes ou suplementares.
 
Congruentes e Suplementares
Congruentes(figura acima)
Quando ambos os ângulos são agudos, retos ou obtusos.
Suplementares(figura acima)
Quando ambos os ângulos são retos ou quando um deles for agudo e o outro obtuso.




Ângulos de lados perpendiculares
São dois ângulos cujos lados são perpendiculares e também podem ser congruentes ou suplementares.


Congruentes
Quando os dois ângulos são:
  • agudos;
  • retos;
  • obtusos.
Suplementares:
Quando:
  •  os dois ângulos são retos ou
  • um dos ângulos é agudo e o outro obtuso.

quarta-feira, 18 de agosto de 2010

Geometria: Conceitos básicos

          Introdução à Geometria Euclidiana



Este trabalho trata da Geometria Euclidiana, uma vez que há vários tipos de Geometria. A morte de Alexandre, o Grande, gerou várias disputas entre os generais do exército grego mas em 306 a.C., o controle da parte egípcia do império passou às mãos de Ptolomeu I e uma de suas primeiras criações foi uma escola ou instituto conhecido como Museu, em Alexandria. Chamou um grupo de sábios como professores, entre eles Euclides, o compilador de Os Elementos, que é o texto matemático de maior sucesso de todos os tempos. O grande organizador da geometria foi Euclides (300 a.C). Sobre a fama de Euclides, sabe-se pouco sobre sua vida e nem mesmo o local de nascimento. Euclides é conhecido como Euclides de Alexandria, pois lá esteve para ensinar Matemática. 

                                     Ponto, Reta e Plano
Ponto, Reta e Plano são noções primitivas dentre os conceitos geométricos. Os conceitos geométricos são estabelecidos por meio de definições. As noções primitivas são adotadas sem definição. Como podemos imaginar ou formar idéias de ponto, reta e plano, então serão aceitos sem definição.


Podemos ilustrar com as seguintes idéias para entender alguns conceitos primitivos em Geometria:

PONTO: estrela no céu, pingo de caneta, furo de agulha num papel,


 RETA: fio esticado, lados de um quadro, ...

PLANO: o quadro negro, a superfície de uma mesa, ...


Notações de Ponto, Reta e Plano
As representações de objetos geométricos podem ser realizadas por letras usadas em nosso cotidiano, da seguinte forma:




Pontos A, B, L e M representados por letras maiúsculas latinas;

Retas r, s, x, p, q, u e v representados por letras minúsculas latinas;

Planos Alfa, Beta e Gama representados por letras gregas minúsculas. Plano Alfa (rosa), Plano Beta (azul claro) e Plano Gama (amarelo).


Observação: Por um único ponto passam infinitas retas.




De um ponto de vista prático, imagine o Pólo Norte e todas as linhas meridianas (imaginárias) da Terra passando por este ponto.



Numa reta, bem como fora dela, há infinitos pontos, mas dois pontos distintos determinam uma única reta. Em um plano e também fora dele, há infinitos pontos.

As expressões "infinitos pontos" ou "infinitas retas", significam "tantos pontos ou retas quantas você desejar".

Pontos Colineares e semi-retas


Pontos colineares
São pontos que pertencem a uma mesma reta. Na figura da esquerda, os pontos A, B e C são colineares, pois todos pertencem à mesma reta r. Na figura da direita, os pontos R, S e T não são colineares, pois T não pertence a reta s.
Semi-retas
Um ponto O sobre uma reta s, divide esta reta em duas semi-retas. O ponto O é a origem comum às duas semi-retas que são denominadas semi-retas opostas.


O ponto A é a origem da semi-reta que contém os pontos A e B e também é a origem da semi-reta que contém os pontos A e C, nas duas figuras ao lado.


A semi-reta que contém os pontos A e B e a semi-reta que contém os pontos A e C são semi-retas opostas. A notação XY para uma semi-reta significa uma semi-reta que contém os pontos X e Y.


As semi-retas AB e AC estão na mesma reta, têm a mesma origem e são infinitas em sentidos contrários, isto é, iniciam em um ponto e se prolongam infinitamente.

 
Segmentos de Reta: Consecutivos, Colineares, Congruentes e Adjacentes

Dada uma reta s e dois pontos distintos A e B sobre a reta, o conjunto de todos os pontos localizados entre A e B, inclusive os próprios A e B, recebe o nome de segmento de reta, neste caso, denotado por AB. Às vezes, é interessante trabalhar com segmentos que tem início em um ponto chamado origem e terminam em outro ponto chamado extremidade. Os segmentos de reta são classificados como: consecutivos, colineares, congruentes e adjacentes.


Segmentos Consecutivos
Dois segmentos de reta são consecutivos se, a extremidade de um deles é também extremidade do outro, ou seja, uma extremidade de um coincide com uma extremidade do outro

AB e BC



são consecutivos
 
 
MN e NP



são consecutivos
 
EF e GH



não são consecutivos
 


 
                                    Segmentos Colineares
 Dois segmentos de reta são colineares se estão numa mesma reta.
 
AB e CD



são colineares
 
 
MN e NP



são colineares
 
EF e FG



não são colineares
 
Sobre segmentos consecutivos e colineares, podemos ter algumas situações:




Os segmentos AB, BC e CD são consecutivos e colineares, mas os segmentos AB e CD não são consecutivos embora sejam colineares

Os segmentos de reta EF e FG são consecutivos, mas não são colineares



                                   Segmentos Congruentes
Dois segmentos são congruentes quando têm as mesmas medidas. No desenho ao lado, AB e CD são congruentes. A congruência entre os segmentos AB e CD é denotada por AB~CD, onde "~" é o símbolo de congruência.




                                   Segmentos Adjacentes

Dois segmentos consecutivos e colineares são adjacentes, se possuem em comum apenas uma extremidade e não têm outros pontos em comum.


MN e NP são adjacentes, tendo somente N em comum. MP e NP não são adjacentes, pois existem muitos pontos em comum.


                  Ponto Médio de um segmento
M é o ponto médio do segmento de reta AB, se M divide o segmento AB em dois segmentos congruentes, ou seja, AM~MB. O ponto médio é o ponto de equilíbrio de um segmento de reta.

Historia da Matemática


Por volta dos séculos IX e VIII A.C., a matemática engatinhava na Babilônia.
Os babilônios e os egípcios já tinham uma álgebra e uma geometria, mas somente o que bastasse para as suas necessidades práticas, e não de uma ciência organizada.
Na Babilônia, a matemética era cultivada entre os escrivas responsáveis pelos tesouros reais.
Apesar de todo material algébrico que tinham os babilônios e egípcios, só podemos encarar a matemática como ciência, no sentido moderno da palavra, a partir dos séculos VI e V A.C., na Grécia.

A matemática grega se distingue da babilônica e egípcia pela maneira de encará-la.
Os gregos fizeram-na uma ciência propriamente dita sem a preocupação de suas aplicações práticas.
Do ponto de vista de estrutura, a matemática grega se distingue da anterior, por ter levado em conta problemas relacionados com processos infinitos, movimento e continuidade.
As diversas tentativas dos gregos de resolverem tais problemas fizeram com que aparecesse o método axiomático-dedutivo.
O método axiomático-dedutivo consiste em admitir como verdadeiras certas preposições (mais ou menos evidentes) e a partir delas, por meio de um encadeamento lógico, chegar a proposições mais gerais.
As dificuldades com que os gregos depararam ao estudar os problemas relativos a processos infinitos (sobretudo problemas sobre números irracionais) talvez sejam as causas que os desviaram da álgebra, encaminhando-os em direção à geometria.
Realmente, é na geometria que os gregos se destacam, culminando com a obra de Euclides, intitulada "Os Elementos".
Sucedendo Euclides, encontramos os trabalhos de Arquimedes e de Apolônio de Perga.
Arquimedes desenvolve a geometria, introduzindo um novo método, denominado "método de exaustão", que seria um verdadeiro germe do qual mais tarde iria brotar um importante ramo de matemática (teoria dos limites).
Apolônio de Perga, contemporâneo de Arquimedes, dá início aos estudos das denominadas curvas cônicas: a elipse, a parábola, e a hipérbole, que desempenham, na matemática atual, papel muito importante.
No tempo de Apolônio e Arquimedes, a Grécia já deixara de ser o centro cultural do mundo. Este, por meio das conquistas de Alexandre, tinha-se transferido para a cidade de Alexandria.
Depois de Apolônio e Arquimedes, a matemática graga entra no seu ocaso.
A 10 de dezembro de 641, cai a cidade de Alexandria sob a verde bandeira de Alá. Os exércitos árabes, então empenhados na chamada Guerra Santa, ocupam e destroem a cidade, e com ela todas as obras dos gregos. A ciência dos gregos entra em eclipse.
Mas a cultura helênica era bem forte para sucumbir de um só golpe; daí por diante a matemática entra num estado latente.
Os árabes, na sua arremetida, conquistam a Índia encontrando lá um outro tipo de cultura matemática: a Álgebra e a Aritmética.
Os hindus introduzem um símbolo completamente novo no sistema de numeração até então conhecido: o ZERO.
Isto causa uma verdadeira revolução na "arte de calcular".
Dá-se início à propagação da cultura dos hindus por meio dos árabes. Estes levam à Europa os denominados "Algarismos arábicos", de invenção dos hindus.
Um dos maiores propagadores da matemática nesse tempo foi, sem dúvida, o árabe Mohamed Ibn Musa Alchwarizmi, de cujo nome resultaram em nossa língua as palavras algarismos e Algoritmo.
Alehwrizmi propaga a sua obra, "Aldschebr Walmakabala", que ao pé da letra seria: restauração e confonto. (É dessa obra que se origina o nome Álgebra).
A matemática, que se achava em estado latente, começa a se despertar.
No ano 1202, o matemático italiano Leonardo de Pisa, cognominado de "Fibonacci" ressuscita a Matemática na sua obra intitulada "Leber abaci" na qual descreve a "arte de calcular" (Aritmética e Álgebra). Nesse livro Leonardo apresenta soluções de equações do 1º, 2º e 3º graus.
Nessa época a Álgebra começa a tomar o seu sapecto formal. Um monge alemão. Jordanus Nemorarius já começa a utilizar letras para significar um número qualquer, e ademais introduz os sinais de + (mais) e - (menos) sob a forma das letras p (plus = mais) e m (minus = menos).
Outro matemático alemão, Michael Stifel, passa a utilizar os sinais de mais (+) e menos (-), como nós os utilizamos atualmente.
É a álgebra que nasce e se põe em franco desenvolvimento.
Tal desenvolvimento é finalmente consolidado na obra do matemático francês, François Viete, denominada "Algebra Speciosa".
Nela os símbolos alfabéticos têm uma significação geral, podendo designar números, segmentos de retas, entes geométricos etc.
No século XVII, a matemática toma nova forma, destacando-se de início René Descartes e Pierre Fermat.
A grande descoberta de R. Descartes foi sem dúvida a "Geometria Analítica" que, em síntese, consiste nas aplicações de métodos algébricos à geometria.
Pierre Fermat era um advogado que nas horas de lazer se ocupava com a matemática.
Desenvolveu a teoria dos números primos e resolveu o importante problema do traçado de uma tangente a uma curva plana qualquer, lançando assim, sementes para o que mais tarde se iria chamar, em matemática, teoria dos máximos e mínimos.
Vemos assim no século XVII começar a germinar um dos mais importantes ramos da matemática, conhecido como Análise Matemática.
Ainda surgem, nessa época, problemas de Física: o estudo do movimento de um corpo, já anteriormente estudados por Galileu Galilei.
Tais problemas dão origens a um dos primeiros descendentes da Análise: o Cálculo Diferencial.
O Cálculo Diferencial aparece pela primeira vez nas mãos de Isaac Newton (1643-1727), sob o nome de "cálculo das fluxões", sendo mais tarde redescoberto independentemente pelo matemático alemão Gottfried Wihelm Leibniz.
A Geometria Analítica e o Cálculo dão um grande impulso à matemática.
Seduzidos por essas novas teorias, os matemáticos dos séculos XVII e XVIII, corajosa e despreocupadamente se lançam a elaborar novas teorias analíticas.
Mas nesse ímpeto, eles se deixaram levar mais pela intuição do que por uma atitude racional no desenvolvimento da ciência.
Não tardaram as consequências de tais procedimentos, começando por aparecer contradições.
Um exemplo clássico disso é o caso das somas infinitas, como a soma abaixo:

S = 3 - 3 + 3 - 3 + 3...........

supondo que se tenha um nº infinito de termos.
Se agruparmos as parcelas vizinhas teremos:
S = (3 - 3) + (3 - 3) + ...........= 0 + 0 +.........= 0

Se agruparmos as parcelas vizinhas, mas a partir da 2ª, não agrupando a primeira:

S = 3 + ( - 3 + 3) + ( - 3 + 3) + ...........= 3 + 0 + 0 + ......... = 3

O que conduz a resultados contraditórios.
Esse "descuido" ao trabalhar com séries infinitas era bem característicos dos matemáticos daquela época, que se acharam então num "beco sem saída'.
Tais fatos levaram, no ocaso do século XVIII, a uma atitude crítica de revisão dos fatos fundamentais da matemática.
Pode-se afirmar que tal revisão foi a "pedra angular" da matemática.
Essa revisão se inicia na Análise, com o matemático francês Louis Cauchy (1789 - 1857), professor catedrático na Faculdade de Ciências de Paris.
Cauchy realizou notáveis trabalhos, deixando mais de 500 obras escritas, das quais destacamos duas na Análise: "Notas sobre o desenvolvimento de funções em séries" e "Lições sobre aplicação do cálculo à geometria".
Paralelamente, surgem geometrias diferentes da de Euclides, as denominadas Geometrias não euclidianas.
Por volta de 1900, o método axiomático e a Geometria sofrem a influência dessa atitude de revisão crítica, levada a efeito por muitos matemáticos, dentre os quais destacamos D. Hilbert, com sua obra "Fundamentos da Geometria" ("Grudlagen der Geometrie" título do original), publicada em 1901.
A Álgebra e a Aritmética tomam novos impulsos.
Um problema que preocupava os matemáticos era o da possibilidade ou não da solução de equações algébricas por meio de fórmulas que aparecessem com radicais.
Já se sabia que em equações do 2º e 3º graus isto era possível; daí surgiu a seguinte questão: será que as equações do 4º graus em diante admitem soluções por meio de radicais?
Em trabalhos publicados por volta de 1770, Lagrange (1736 - 1813) e Vandermonde (1735-96) iniciaram estudos sistemáticos dos métodos de resolução.
À medida em que as pesquisas se desenvolviam no sentido de achar tal tipo de resolução, ia se evidenciando que isso não era possível.
No primeiro terço do século XIX, Niels Abel (1802-29) e Evariste de Galois (1811-32) resolvem o problema, demonstrando que as equações do quarto e quinto grau em diante não podiam ser resolvidas por radicais.
O trabalho de Galois, somente publicado em 1846, deu origem a chamada "teoria dos grupos" e à denominada "Álgebra Moderna", dando também grande impulso à teoria dos números.
Com respeito à teoria dos números não nos podemos esquecer das obras de R. Dedekind e Gorg Cantor.
R. Dedekind define os números irracionais pela famosa noção de "Corte".
Georg Cantor dá início à chamada Teoria dos conjuntos, e de maneira arrojada aborda a noção de infinito, revolucionando-a.
A partir do século XIX a matemática começa então a se ramificar em diversas disciplinas, que ficam dada vez mais abstratas.
Atualmente se desenvolvem tais teorias abstratas, que se subdividem em outras disciplinas.
Os entendidos afirmam que estamos em plena "idade de ouro" da Matemática, e que neste últimos cinquenta anos tem se criado tantas disciplinas, novas matemáticas, como se haviam criado nos séculos anteriores.
Esta arremetida em direção ao "Abstrato", ainda que não pareça nada prática, tem por finalidade levar adiante a "Ciência".
A história tem mostrado que aquilo que nos parece pura abstração, pura fantasia matemática, mais tarde se revela como um verdadeiro celeiro de aplicações práticas.
A Ciência dos Gregos
Se nos fosse possível voltar à época de 640 a.C., na então florescente cidade de Mileto encontraríamos um próspero comerciante, já muito famoso, por, entre outras coisas, ter predito um eclipse ocorrido em maio de 585 a.C.
Chama-se Tales, e foi posteriormente incluído entre os denominados "sete sábios da Antiguidade". Sendo comerciante, teve oportunidade de tomar contacto com a matemática dos egípcios.
A matemática egípcia tinha um caráter eminentemente prático; não era formada por um corpo de conhecimentos interligados, mas sim, por conhecimentos esparsos.
Um dos poucos fragmentos de que dispomos dos conhecimentos matemáticos dos egípcios se acham no denominado papiro de Rhind, de autoria do escriba Ahmes.
Esse papiro é a assim chamado em honra a um antiquário escocês que o comprou em 1858 de um mercador da cidade de Luxor, às margens do Nilo.
Em tal papiro encontramos as seguintes palavras (sobre o objetivo mesmo): "direção para saber todas as coisas obscuras".
 
                                                                      Euclides




Pouco se sabe com certeza da vida de Euclides.

Sabemos que viveu em Bizâncio entre os anos de 485 a 410 a.C.

Nesse tempo, o sábio Ptolomeu I, sucedia a Alexandre Magno no trono do Egito. Sob seus cuidados, surgiu em Alexandria uma instituição, denominada "Museu", que congregava a maioria dos sábios da época. O Museu foi erigido ao lado do palácio real, tinha dependências residenciais, salas de aula, e de conferências, e o que é mais importante — a maior biblioteca da época.
Euclides foi o primeiro diretor do Museu, e, graças a isso, pode organizar os resultados obtidos por matemáticos anteriores (Tales, Pitágoras, Eudoxo e outros).Tal organização se acha em sua imortal obra, modestamente intitulada de "Os Elementos'.
"Os Elementos" é um conjunto de 13 livros dedicados ao fundamento e desenvolvimento lógico e sistemático da geometria.
O primeiro livro trata das questões que são fundamentais para a geometria, e o seu estilo, sua ordenção, serviram de normas diretoras para todas as outras obras posteriores da matemática. Os princípios dos quais parte Euclides para edificar a geometria são as definições, os postulados e os entes primitivos.
As definições são, no ínicio, em número de 23, e ao todo, no texto, atingem 120. Por exemplo, no primeiro livro, encontramos as seguintes definições:

"Ponto é aquilo que não tem partes"

"Reta é o comprimento sem espessura"
"Superfície é o que tem unicamente comprimento e largura"

"Retas paralelas são aquela que, estando em um mesmo plano, não se encontram ao serem prolongadas indefinidamente".

Essas definições, agora nos parecem um tanto ingênuas e despidas de rigor lógico, mas tenhamos em conta a época em que foram escritas e o pioneirismo de Euclides. Adotando em seguida 10 postulados Euclides deduz seus teoremas. A partir do dia de seu aparecimento "Os Elementos" se tornou a obra clássica da Geometria, e de tal modo foi difundida que chegou a sobrepujar o seu autor, a ponto de, na Idade Média, se negar a existência física de Euclides.

Os sucessos de Euclides
Depois de Euclides, dois matemáticos de gabariot apareceram em Alexandria: Apolônio e Arquimedes, sendo este último considerado uma das maiores personagens da Antiguidade.
É interessante notar-se que tanto Apolônio como Arquimedes fizeram suas investigações matemáticas dentro de um espírito platônico, isto é, na mais alta abstração dos fatos concretos que deram origem às mesmas.
Apolônio, dedicou-se principalmente ao estudo de uma família de curvas denominadas de — cônicas.
A razão desta denominação é que tais curvas resultam de um corte conveniente do cone. Dependendo da maneira como cortamos o cone, resultará uma circunferência de círculo ou uma elipse, ou uma parábola, ou ainda uma hipérbole. As curvas cônicas desepenham papel relevante na física e na matemática atual. As órbitas do planetas são elipses, a trajetória dos foguetes balísticos são parábolas, os espelhos dos telescópios são parabólicos, etc.
Apolônio recebeu um apelido curioso de seus discípulos, o de Épsilon, em virtude de sua sala de aula ser designada pela letra grega épsilon. Podemos dizer que Apolônio, com a sua obra, deu um "fecho de ouro" na geometria grega. Mas ele ainda não seria o último; em seguida nos encontramos com um verdadeiro gênio — Arquimedes de Sirascusa.
Arquimedes — O "Newton" grego
Arquimedes nasceu na cidade de Siracusa no ano 287 a.C., descendente da família real. Embora da época tão remota podemos considerar Arquimedes como um moderno em pesamento. Realmente podemos equipará-lo com o genial físico e matemático inglês Isaac Newton.
Arquimedes não foi só matemático, mas também iventor. Seus inventos eram baseados no que hoje chamamos de máquinas simples — alavancas, roldanas, sarilhos. É famosa a sua afirmação (querendo ressaltar os efeitos de uma alvanca):

"Dai-me um ponto de apoio e eu moverei o mundo".

Arquimedes construiu muitos engenhos de guerra, através dos quais a sua cidade, Siracusa, conseguiu resistir às hostes romanas durante mais de dois anos. Sabe-se que Arquimedes incendiou e destruiu uma esquadra romana, usando espelhos parabólicas. Aida é sua descoberta o "parafuso sem fim", o qual utiliza para elevação da água.
Um problema onde Arquimedes mostrou toda a sua habilidade como matemático foi, sem dúvida, aquele para se calcular a àrea de um círculo de raio R.

Para isso ele usou um raciocínio que só mais tarde (1600 a 1700 d.C.) iria ser utilizado por Newton e Leibniz na invenção do cálculo infinitesimal.


Seja S a área do círculo. Dividimos tal círculo em número muito grande de partes iguais (por meio de triângulos). Obtemos assim um polígono cuja área A é menor que S (área do círculo). Coloquem-se agora tais triângulos sobre uma reta.
O segmento AB tem para medida um número que chamaremos de P. P é o menor que o comprimento de C da circunferência do círculo.
Com esta tira de triângulos podemos formar um "retângulo" de altura R (aproximadamente) e base 1/2P, obtido dobrando-a ao meio (para um número finito de triângulos, temos um paralelogramo).
A área desse "retângulo" é A e é menor que S.
A área de A se aproximará de S quanto maior for o número de divisões. Se o número n de divisões for infinito, a área A coincidirá com S e o comprimento P coincidira com c.
Um outro problema que sempre apaixonou Arquimedes, e que, segundo ele, era "o mais difícil", foi o de encontrar a relação entre o volume do cone, da esfera e do cilindro, um colocado dentro do outro (cone e cilindro equiláteros, inscrito e excrito na esfera)
Uma famosa descoberta de Arquimedes é o conhecido "Princípio de Arquimedes", da hidrostática, que diz:
" Todo corpo imerso em um fluido recebe deste um empuxo vertical (de baixo para cima) em intensidade igual ao volume deslocado do fluido".
Conta a lenda (narrada posteriormente pelo arquiteto romano vitrúvio) que Arquimedes descobriu tal princípio enquanto tomava banho, e que saiu gritando pelas ruas — "Eureka, Eureka! que quer dizer "Achei"!

                              Os egípcios criam os símbolos


Por volta do ano 4.000 a.C., algumas comunidades primitivas aprenderam a usar ferramentas e armas de bronze. Aldeias situadas às margens de rios transformaram-se em cidades. A vida ia ficando cada vez mais complexa. Novas atividades iam surgindo, graças sobretudo ao desenvolvimento do comércio. Os agricultores passaram a produzir alimentos em quantidades superiores às suas necessidades. Com isso algumas pessoas puderam se dedicar a outras atividades, tornando-se artesãos, comerciantes, sacerdotes, administradores.
Como conseqüência desse desenvolvimento surgiu a escrita. Era o fim da Pré-História e o começo da História. Os grandes progressos que marcaram o fim da Pré-História verificaram-se com muita intensidade e rapidez no Egito. Você certamente já ouviu falar nas pirâmides do Egito. Para fazer os projetos de construção das pirâmides e dos templos, o número concreto não era nada prático. Ele também não ajudava muito na resolução dos difíceis problemas criados pelo desenvolvimento da indústria e do comércio.


Como efetuar cálculos rápidos e precisos com pedras, nós ou riscos em um osso? Foi partindo dessa necessidade imediata que estudiosos do Antigo Egito passaram a representar a quantidade de objetos de uma coleção através de desenhos – os símbolos. A criação dos símbolos foi um passo muito importante para o desenvolvimento da Matemática. Na Pré-História, o homem juntava 3 bastões com 5 bastões para obter 8 bastões. Hoje sabemos representar esta operação por meio de símbolos. 3 + 5 = 8 Muitas vezes não sabemos nem que objetos estamos somando. Mas isso não importa: a operação pode ser feita da mesma maneira. Mas como eram os símbolos que os egípcios criaram para representar os números?
                     Contando com os egípcios

Há mais ou menos 3.600 anos, o faraó do Egito tinha um súdito chamado Aahmesu, cujo nome significa “Filho da Lua”. Aahmesu ocupava na sociedade egípcia uma posição muito mais humilde que a do faraó: provavelmente era um escriba. Hoje Aahmesu é mais conhecido do que muitos faraós e reis do Antigo Egito. Entre os cientistas, ele é chamado de Ahmes. Foi ele quem escreveu o Papiro Ahmes.


O papiro Ahmes é um antigo manual de matemática. Contém 80 problemas, todos resolvido. A maioria envolvendo assuntos do dia-a-dia, como o preço do pão, a armazenagem de grãos de trigo, a alimentação do gado. Observando e estudando como eram efetuados os cálculos no


Papiro Ahmes, não foi difícil aos cientistas compreender o sistema de numeração egípcio. Além disso, a decifração dos hieróglifos – inscrições sagradas das tumbas e monumentos do Egito – no século XVIII também foi muito útil. O sistema de numeração egípcio baseava-se em sete números-chave:


1 10 100 1.000 10.000 100.000 1.000.000 Os egípcios usavam símbolos para representar esses números. Um traço vertical representava 1 unidade: Um osso de calcanhar invertido representava o número 10: Um laço valia 100 unidades: Uma flor de lótus valia 1.000: Um dedo dobrado valia 10.000: Com um girino os egípcios representavam 100.000 unidades: Uma figura ajoelhada, talvez representando um deus, valia 1.000.000:

Todos os outros números eram escritos combinando os números-chave. Na escrita dos números que usamos atualmente, a ordem dos algarismos é muito importante. Se tomarmos um número, como por exemplo: 256 e trocarmos os algarismos de lugar, vamos obter outros números completamente diferentes: 265 526 562 625 652 Ao escrever os números, os egípcios não se preocupavam com a ordem dos símbolos. Observe no desenho que apesar de a ordem dos símbolos não ser a mesma, os três garotos do Antigo Egito estão escrevendo o mesmo número:

45


Os papiros da Matemática egípcia
Quase tudo o que sabemos sobre a Matemática dos antigos egípcios se baseia em dois grandes papiros: o Papiro Ahmes e o Papiro de Moscou. O primeiro foi escrito por volta de 1.650 a.C. e tem aproximadamente 5,5 m de comprimento e 32 cm de largura. Foi comprado em 1.858 por um antiquário escocês chamado Henry Rhind. Por isso é conhecido também como Papiro de Rhind. Atualmente encontra-se no British Museum, de Londres. O Papiro de Moscou é uma estreita tira de 5,5 m de comprimento por 8 cm de largura, com 25 problemas. Encontra-se atualmente em Moscou. Não se sabe nada sobre o seu autor.


A técnica de calcular dos egípcios


Com a ajuda deste sistema de numeração, os egípcios conseguiam efetuar todos os cálculos que envolviam números inteiros. Para isso, empregavam uma técnica de cálculo muito especial: todas as operações matemáticas eram efetuadas através de uma adição. Por exemplo, a multiplicação 13 * 9 indicava que o 9 deveria ser adicionado treze vezes.


13 * 9 = 9 + 9 + 9 + 9 + 9 + 9 + 9 + 9 + 9 + 9 + 9 + 9 + 9 A tabela abaixo ajuda a compreender como os egípcios concluíam a muliplicação:

Número de parcelas Resultado 1 9 2 18 4 36 8 72


Eles buscavam na tabela um total de 13 parcelas; era simplesmente a soma das três colunas destacadas:
1 + 4 + 8 = 13 O resultado da multiplicação 13 * 9 era a soma dos resultados desta três colunas:
9 + 36 + 72 = 117 Os egípcios eram realmente muito habilidosos e criativos nos cálculos com números inteiros. Mas, em muitos problemas práticos, eles sentiam necessidades de expressar um pedaço de alguma coisa através de um número. E para isso os números inteiros não serviam.

                        Descobrindo a fração
Por volta do ano 3.000 a.C., um antigo faraó de nome Sesóstris... “... repartiu o solo do Egito às margens do rio Nilo entre seus habitantes. Se o rio levava qualquer parte do lote de um homem, o faraó mandava funcionários examinarem e determinarem por medida a extensão exata da perda.” Estas palavras foram escritas pelo historiador grego Heródoto, há cerca de 2.300 anos. O rio Nilo atravessa uma vasta planície. Uma vez por ano, na época das cheias, as águas do Nilo sobem muitos metros acima de seu leito normal, inundando uma vasta região ao longo de suas margens. Quando as águas baixam, deixam descobertas uma estreita faixa de terras férteis, prontas para o cultivo. Desde a Antigüidade, as águas do Nilo fertilizam os campos, beneficiando a agricultura do Egito. Foi nas terras férteis do vale deste rio que se desenvolveu a civilização egípcia. Cada metro de terra era precioso e tinha de ser muito bem cuidado.
 
 

Sesóstris repartiu estas preciosas terras entre uns poucos agricultores privilegiados. Todos os anos, durante o mês de junho, o nível das águas do Nilo começava a subir. Era o início da inundação, que durava até setembro. Ao avançar sobre as margens, o rio derrubava as cercas de pedra que cada agricultor usava par marcar os limites do terreno de cada agricultor. Usavam cordas para fazer a medição. Havia uma unidade de medida assinada na própria corda. As pessoas encarregadas de medir esticavam a corda e verificavam quantas vezes aquela unidade de medida estava contida nos lados do terreno. Daí, serem conhecidas como estiradores de cordas. No entanto, por mais adequada que fosse a unidade de medida escolhida, dificilmente cabia um número inteiro de vezes no lados do terreno. Foi por essa razão que os egípcios criaram um novo tipo de número: o número fracionário. Para representar os números fracionários, usavam frações.


                As complicadas frações egípcias

Os egípcios interpretavam a fração somente como uma parte da unidade. Por isso, utilizavam apenas as frações unitárias, isto é, com numerador igual a 1. Para escrever as frações unitárias, colocavam um sinal oval alongado sobre o denominador. As outras frações eram expressas através de uma soma de frações de numerador 1. Os egípcios não colocavam o sinal de adição - + - entre as frações, porque os símbolos das operações ainda não tinham sido inventados. No sistema de numeração egípcio, os símbolos repetiam-se com muita freqüência. Por isso, tanto os cálculos com números inteiros quanto aqueles que envolviam números fracionários eram muito complicados. Assim como os egípcios, outros povos também criaram o seu próprio sistema de numeração. Porém, na hora de efetuar os cálculos, em qualquer um dos sistemas empregados, as pessoas sempre esbarravam em alguma dificuldade. Apenas por volta do século III a.C. começou a se formar um sistema de numeração bem mais prático e eficiente do que os outros criados até então: o sistema de numeração romano.

                     Contando com os romanos
De todas as civilizações da Antigüidade, a dos romanos foi sem dúvida a mais importante. Seu centro era a cidade de Roma. Desde sua fundação, em 753 a.C., até ser ocupada por povos estrangeiros em 476 d.C., seus habitantes enfrentaram um número incalculável de guerras de todos os tipos. Inicialmente, para se defenderem dos ataques de povos vizinhos; mais tarde nas campanhas de conquistas de novos territórios. Foi assim que, pouco a pouco, os romanos foram conquistando a península Itálica e o restante da Europa, além de uma parte da Ásia e o norte de África.


Apesar de a maioria da população viver na miséria, em Roma havia luxo e muita riqueza, usufruídas por uma minoria rica e poderosa. Roupas luxuosas, comidas finas e festas grandiosas faziam parte do dia-a-dia da elite romana. Foi nesta Roma de miséria e luxo que se desenvolveu e aperfeiçoou o número concreto, que vinha sendo usado desde a época das cavernas. Como foi que os romanos conseguiram isso?

               O sistema de numeração romano
Os romanos foram espertos. Eles não inventaram símbolos novos para representar os números; usaram as próprias letras do alfabeto.


I V X L C D M Como será que eles combinaram estes símbolos para formar o seu sistema de numeração? O sistema de numeração romano baseava-se em sete números-chave: I tinha o valor 1. V valia 5. X representava 10 unidades. L indicava 50 unidades. C valia 100. D valia 500. M valia 1.000.

Quando apareciam vários números iguais juntos, os romanos somavam os seus valores.

II = 1 + 1 = 2 XX = 10 + 10 = 20 XXX = 10 + 10 + 10 = 30

Quando dois números diferentes vinham juntos, e o menor vinha antes do maior, subtraíam os seus valores.
IV = 4 porque 5 - 1 = 4 IX = 9 porque 10 – 1 = 9 XC = 90 porque 100 – 10 = 90

Mas se o número maior vinha antes do menor, eles somavam os seus valores.
VI = 6 porque 5 + 1 = 6 XXV = 25 porque 20 + 5 = 25 XXXVI = 36 porque 30 + 5 + 1 = 36 LX = 60 porque 50 + 10 = 60

Ao lermos o cartaz, ficamos sabendo que o exercíto de Roma fez numa certa época MCDV prisioneiros de guerra. Para ler um número como MCDV, veja os cálculos que os romanos faziam:
Em primeiro lugar buscavam a letra de maior valor. M = 1.000
Como antes de M não tinha nenhuma letra, buscavam a segunda letra de maior valor.

D = 500

Depois tiravam de D o valor da letra que vem antes.


D – C = 500 – 100 = 400

Somavam 400 ao valor de M, porque CD está depois e M.

M + CD = 1.000 + 400 = 1.400


Sobrava apenas o V. Então:


MCDV = 1.400 + 5= 1.405


Os milhares Como você acabou de ver, o número 1.000 era representado pela letra M. Assim, MM correspondiam a 2.000 e MMM a 3.000. E os números maiores que 3.000? Para escrever 4.000 ou números maiores que ele, os romanos usavam um traço horizontal sobre as letras que representavam esses números. Um traço multiplicava o número representado abaixo dele por 1.000. Dois traços sobre o M davam-lhe o valor de 1 milhão. O sistema de numeração romano foi adotado por muitos povos. Mas ainda era difícil efetuar cálculos com este sistema. Por isso, matemáticos de todo o mundo continuaram a procurar intensamente símbolos mais simples e mais apropriados para representar os números. E como resultado dessas pesquisas, aconteceu na Índia uma das mais notáveis invenções de toda a história da Matemática: O sistema de numeração decimal.

                     Afinal os nossos números
No século VI foram fundados na Síria alguns centros de cultura grega. Consistiam numa espécie de clube onde os sócios se reuniam para discutir exclusivamente a arte e a cultura vindas da Grécia. Ao participar de uma conferência num destes clubes, em 662, o bispo sírio Severus Sebokt, profundamente irritado com o fato de as pessoas elogiarem qualquer coisa vinda dos gregos, explodiu dizendo:

“Existem outros povos que também sabem alguma coisa! Os hindus, por exemplo, têm valiosos métodos de cálculos. São métodos fantásticos! E imaginem que os cálculos são feitos por apenas nove sinais!”. A referência a nove, e não dez símbolos, significa que o passo mais importante dado pelos hindus para formar o seu sistema de numeração – a invenção do zero - ainda não tinha chegado ao Ocidente. A idéia dos hindus de introduzir uma notação para uma posição vazia – um ovo de ganso, redondo – ocorreu na Índia, no fim do século VI. Mas foram necessários muitos séculos para que esse símbolo chegasse à Europa. Com a introdução do décimo sinal – o zero – o sistema de numeração tal qual o conhecemos hoje estava completo. Até chegar aos números que você aprendeu a ler e escrever, os símbolos criados pelos hindus mudaram bastante. Hoje, estes símbolos são chamados de algarismos indo-arábicos. Se foram os matemáticos hindus que inventaram o nosso sistema de numeração, o que os árabes têm a ver com isso? E por que os símbolos
0 1 2 3 4 5 6 7 8 9 são chamados de algarismos?

Os árabes divulgam ao mundo os números hindus






Simbad, o marujo, Aladim e sua lâmpada maravilhosa, Harum al-Raschid são nomes familiares para quem conhece os contos de As mil e uma noites. Mas Simbad e Aladim são apenas personagens do livro, Harum al-Raschid realmente existiu. Foi o califa de Bagdá, do ano 786 até 809. Durante o seu reinado os povos árabes travaram uma séria de guerras de conquista. E como prêmios de guerra, livros de diversos centros científicos foram levados para Bagdá e traduzidos para a língua árabe.
Em 809, o califa de Bagdá passou a ser al-Mamum, filho de Harum al-Rahchid. Al-Mamum era muito vaidoso. Dizia com toda a convicção. “Não há ninguém mais culto em todos os ramos do saber do que eu”. Como era um apaixonado da ciência, o califa procurou tornar Bagdá o maior centro científico do mundo, contratando os grandes sábios muçulmanos da época. Entre eles estava o mais brilhante matemático árabe de todos os tempos: al-Khowarizmi. Estudando os livros de Matemática vindos da Índia e traduzidos para a língua árabe, al-Khowarizmi surpreendeu-se a princípio com aqueles estranhos símbolos que incluíam um ovo de ganso! Logo, al-Khowarizmi compreendeu o tesouro que os matemáticos hindus haviam descobertos. Com aquele sistema de numeração, todos os cálculos seriam feitos de um modo mais rápido e seguro. Era impossível imaginar a enorme importância que essa descoberta teria para o desenvolvimento da Matemática.

Al-Khowarizmi decidiu contar ao mundo as boas nova. Escreveu um livro chamado Sobre a arte hindu de calcular, explicando com detalhes como funcionavam os dez símbolos hindus. Com o livro de al-Khowarizmi, matemáticos do mundo todo tomaram conhecimento do sistema de numeração hindu. Os símbolos – 0 1 2 3 4 5 6 7 8 9 – ficaram conhecidos como a notação de al-Khowarizmi, de onde se originou o termo latino algorismus. Daí o nome algarismo. São estes números criados pelos matemáticos da Índia e divulgados para outros povos pelo árabe al-Khowarizmi que constituem o nosso sistema de numeração decimal conhecidos como algarismo indo-arábicos.
 
                       Os números racionais

 

Com o sistema de numeração hindu ficou fácil escrever qualquer número, por maior que ele fosse.
0 13 35 98 1.024 3.645.872 Como estes números foram criados pela necessidade prática de contar as coisas da natureza, eles são chamados de números naturais. Os números naturais simplificaram muito o trabalho com números fracionários. Não havia mais necessidade de escrever um número fracionário por meio de uma adição de dois fracionários, como faziam os matemáticos egípcios. O número fracionário passou a ser escrito como uma razão de dois números naturais. A palavra razão em matemática significa divisão. Portanto, os números inteiros e os números fracionários podem ser expressos como uma razão de dois números naturais. Por isso, são chamados de números racionais. A descoberta de números racionais foi um grande passo para o desenvolvimento da Matemática.
 
OBS: a Fonto dos Racionais foi opção(entenderam né)